Exam I Hints and Answers

Math 124 Spring 2010
Version Alpha

1. (3 points each) (a) $\frac{1}{2}$ (b) ∞ (c) i. 0 ii. $\frac{1}{9}$
2. (3 points each)
(a) $s^{\prime}(t)=\frac{\left(t+7 t^{3 / 2}\right)\left(\sec ^{2} t\right)-(\tan t)\left(1+\frac{21}{2} t^{1 / 2}\right)}{\left(t+7 t^{3 / 2}\right)^{2}}$
(b) $\frac{d y}{d x}=e^{3 x} \cos x+(\sin x)\left(e^{3 x}\right)(3)$
(c) $f^{\prime}(x)=100\left(\frac{3 x-1}{2 x+5}\right)^{99}\left[\frac{(2 x+5)(3)-(3 x-1)(2)}{(2 x+5)^{2}}\right]$
(d) $g^{\prime}(\theta)=5 \cos (\theta)+\sin \left(\theta^{2}\right) \cdot 2 \theta$
3. (a) (3 points) $x=2$
(b) (3 points) $y-67=16(x-10)$ or $y=16 x-93$
(c) (4 points) HINT: The line in question goes through the points $\left(a, a^{2}-4 a+7\right)$ and $(0,0)$. So its slope is $m=\frac{a^{2}-4 a+7-0}{a-0}$. But this line is also tangent to $f(x)$ at $x=a$, which means its slope is also equal to $f^{\prime}(a)=2 a-4$. Set the two expressions for the slope equal to each other and solve for a.
ANSWER: $a= \pm \sqrt{7}$
4. HINT: The coordinates of P are $\left(1, \frac{5 \sqrt{3}}{2}\right)$ and the coordinates of Q are $\left(1+h, \sqrt{25-\frac{25}{4}(1+h)^{2}}\right)$. ANSWER: $s(h)=\frac{\sqrt{25-\frac{25}{4}(1+h)^{2}}-\frac{5 \sqrt{3}}{2}}{h}$
5. (2 points each)
(a) $y=0$ and $y=3$
(b) $x=-5$ and $x=2$
(c) -5 and 2
(d) $-5,0$, and 2
(e) III
