Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

1	12	
2	12	
3	10	
4	6	
5	10	
Total	50	

- Your exam should consist of this cover sheet, followed by five problems on six pages. Check that you have a complete exam.
- Show all work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854 .)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (12 points) Evaluate the following limits. Each answer should be either a number, $\infty,-\infty$, or "does not exist." If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow 4} \frac{x-2 \sqrt{x}}{(x-3)(x-4)}$
(b) $\lim _{x \rightarrow 1^{+}} \frac{x-10}{x(1-x)}$
(c) Let $f(x)= \begin{cases}\frac{x^{2}-3 x+7}{4 x^{3}+9} & \text { if } x \leq 2 \\ \frac{1}{x+1}-\frac{1}{3} & \text { if } x>2\end{cases}$
i. $\lim _{x \rightarrow-\infty} f(x)$
ii. $\lim _{x \rightarrow 2^{+}} f(x)$
2. (12 points) Use derivative rules to compute the derivative of each of the following functions. (You do not need to simplify your answers.)
(a) $s(t)=\frac{\tan t}{t+7 \sqrt{t^{3}}}$
(b) $y=e^{3 x} \sin x$
(c) $f(x)=\left(\frac{3 x-1}{2 x+5}\right)^{100}$
(d) $g(\theta)=5 \sin (\theta)-\cos \left(\theta^{2}\right)$
3. (10 points) Let $f(x)=x^{2}-4 x+7$.
(a) Find all values of x at which the tangent line to $f(x)$ is horizontal.
(b) Find the equation of the line tangent to $f(x)$ at $x=10$.
(c) Find all values of a such that the line tangent to $f(x)$ at $(a, f(a))$ passes through the origin.
4. (6 points) The ellipse $25 x^{2}+4 y^{2}=100$ is pictured below. P and Q are points on this ellipse. The x-coordinate of P is 1 . The x-coordinate of Q is $1+h$.

Give an expression for $s(h)$, the slope of the secant line through P and Q. You do not need to simplify your expression.
5. (10 points) The graph of $f(x)$ is given below.

YOU DO NOT NEED TO JUSTIFY ANY OF YOUR ANSWERS FOR THIS PROBLEM.
(a) Give the equations of any horizontal asymptotes of $f(x)$.
(b) Give the equations of any vertical asymptotes of $f(x)$.
(c) List all values of x at which $f(x)$ is discontinuous.
(d) List all values of x at which $f(x)$ is not differentiable.

Here is the graph of $f(x)$ again.

(e) Which of the following could be the graph of $f^{\prime}(x)$?
I.

II.

III.
IV.

