MATH 124 C
Exam I
February 2, 2010

Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

> SIGNATURE:
\qquad

1	12	
2	12	
3	8	
4	10	
5	8	
Total	50	

- Your exam should consist of this cover sheet, followed by five problems. Check that you have a complete exam.
- Show all work and justify your answers.
- Unless otherwise indicated, your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854 .)
- You may use a scientific calculator and one 8.5×11-inch sheet of handwritten notes. All other electronic devices (including graphing calculators) are forbidden.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

1. (12 points) Evaluate the following limits. Each answer should be either a number, $\infty,-\infty$, or "does not exist." If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-5 x+6}$
(b) $\lim _{z \rightarrow 1^{+}} \frac{2 z-3}{z^{2}-1}$
(c) $\lim _{x \rightarrow \pi}\left[\sin \left(\frac{x}{2}+\sin x\right)\right]$
(d) $\lim _{x \rightarrow 2} f(x)$ if $f(x)= \begin{cases}6-x & \text { if } x \leq 2 \\ \frac{x^{2}-4}{x+3} & \text { if } x>2\end{cases}$
2. (12 points) Use derivative rules to compute the derivative of each of the following functions. (You do not need to simplify your answers.)
(a) $y=x^{3} e^{x}$
(b) $f(x)=\frac{e^{10 x}}{x^{2}+x-2}$
(c) $y=4 \sin (x)-\frac{1}{x}+\frac{5}{x^{3}}$
(d) $g(x)=\tan \left(x^{2}\right)$
3. (8 points) Sketch the graph of a function $F(x)$ with ALL of the following properties:

- $\lim _{x \rightarrow-\infty} F(x)=-3$;
- $\lim _{x \rightarrow-2^{-}} F(x)=+\infty$;
- $F(-2)=4$;
- $\lim _{x \rightarrow-2^{+}} F(x)=1$;
- $\lim _{x \rightarrow 4^{-}} F(x)=-\infty$;
- $\lim _{x \rightarrow 4^{+}} F(x)=+\infty$; and
- $\lim _{x \rightarrow+\infty} F(x)=5$.

4. (10 points) Let $f(x)=\frac{2 x}{x+1}$.
(a) Give the equations of the vertical and horizontal asymptotes of $f(x)$.
(b) Use the definition of the derivative

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to compute $f^{\prime}(x)$. (No credit will be given for using the derivative rules.)
5. (8 points) Let $g(x)=x^{2}+6$. Find all values of a such that the line tangent to $g(x)$ at $x=a$ has x-intercept -2 .

