1 (14 pts) Determine the values of the following limits, or state that the limit does not exist. If it is correct to say that the limit is $+\infty$ or $-\infty$, then you should say so. Show your work.
a) $\lim _{x \rightarrow \infty}\left(\frac{\sqrt{x^{2}-4 x}}{3 x-12}\right)=\lim _{x \rightarrow \infty}\left(\frac{\frac{1}{x} \sqrt{x^{2}-4 x}}{\frac{1}{x}(3 x-12)}\right)=\lim _{x \rightarrow \infty}\left(\frac{\sqrt{1-\frac{4}{x}}}{3-\frac{12}{x}}\right)=\frac{\sqrt{1-0}}{3-0}=\frac{1}{3}$
b) $\lim _{x \rightarrow \pi^{-}}\left(\ln (\sin (x))=\lim _{y \rightarrow 0^{+}}(\ln (y))=-\infty\right.$
c) $\lim _{t \rightarrow 3}\left(\frac{\sqrt{t+6}-t}{t-3}\right)=\lim _{t \rightarrow 3}\left(\frac{\sqrt{t+6}-t}{t-3} \times \frac{\sqrt{t+6}+t}{\sqrt{t+6}+t}\right)=\lim _{t \rightarrow 3}\left(\frac{t+6-t^{2}}{(t-3)(\sqrt{t+6}+t)}\right)=$
$=\lim _{t \rightarrow 3}\left(\frac{-\left(t^{2}-t-6\right)}{(t-3)(\sqrt{t+6}+t)}\right)=\lim _{t \rightarrow 3}\left(\frac{-(t-3)(t+2)}{(t-3)(\sqrt{t+6}+t)}\right)=\lim _{t \rightarrow 3}\left(\frac{-(t+2)}{\sqrt{t+6}+t}\right)=\frac{-(3+2)}{\sqrt{3+6}+3}=-\frac{5}{6}$

2 (6 pts) Compute the slope of the tangent line to $y=\frac{1}{\sqrt[3]{x}}+\frac{2 x+7}{x}$ at the point $(1,10)$

$$
\begin{gathered}
y=x^{-\frac{1}{3}}+2+7 x^{-1} \\
\frac{d y}{d x}=-\frac{1}{3} x^{-\frac{4}{3}}-7 x^{-2} \\
\text { slope }=\left.\frac{d y}{d x}\right|_{x=1}=-\frac{1}{3}-7=-\frac{22}{3}
\end{gathered}
$$

3 (4 pts) The graph on the right is the graph of a function f.

Which one of the following 4 graphs could be the graph of its
 derivative?

\qquad (d) \qquad (no need to justify)

4 (15 pts) Consider the function Consider the function:

$$
f(x)=\left\{\begin{array}{cc}
2 x+3 & \text { if } x \leq 0 \\
\frac{4}{x+1} & \text { if } 0<x \leq 1 \\
2 \sqrt{x} & \text { if } 1<x
\end{array}\right.
$$

a) (4 pts) Compute the following four limits of this function:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0^{-}} f(x)=3 & \lim _{x \rightarrow 1^{-}} f(x)=2 \\
\lim _{x \rightarrow 0^{+}} f(x)=4 & \lim _{x \rightarrow 1^{+}} f(x)=2
\end{array}
$$

(3 pts) List all the points where this function f is discontinuous. For each point of discontinuity, specify the type: removable, jump or infinite.

$$
x=0(\text { jump })
$$

b) (5 pts) Compute the derivative of f. Write it in bracket notation as above, with correct domain for each part.

$$
f^{\prime}(x)=\left\{\begin{array}{cc}
2 & \text { if } x<0 \\
\frac{-4}{(x+1)^{2}} & \text { if } 0<x<1 \\
\frac{1}{\sqrt{x}} & \text { if } 1<x
\end{array}\right.
$$

c) (3 pts) List all real numbers where f is not differentiable and justify why (discontinuity, corner, or vertical tangent)

Not differentiable at $x=0$ (discontinuous) and $x=1$ (corner)

5 (7 points) (7 points) An object moves in the xy-plane. Its coordinates at time t seconds are given by the parametric equations:

$$
\begin{aligned}
& x(t)=t \cos (t) \\
& y(t)=t \sin (t)
\end{aligned}
$$

Both coordinates are measured in inches, and the time is measured in seconds.
a) Compute the horizontal velocity of this object at time 0 seconds.
(Recall that the horizontal velocity is the instant rate of change of the x-coordinate)
Include correct units in your answer.

$$
\begin{aligned}
& x^{\prime}(t)=1 \cos (t)+t(-\sin (t))=\cos (t)-t \sin (t) \\
& x^{\prime}(0)=1 \text { in } / \mathrm{sec}
\end{aligned}
$$

b) Write a formula in terms of t for the distance $d(t)$ between the origin $(0,0)$ and the position of this object at t seconds. Simplify your formula.

$$
d(t)=\sqrt{(x(t)-0)^{2}+(y(t)-0)^{\wedge} 2}=\sqrt{t^{2} \cos ^{2}(t)+t^{2} \sin ^{2}(t)}=\sqrt{t^{2}}=|t|
$$

Recall: In general, it is not true that $\sqrt{x^{2}}=x$. Rather, $\sqrt{x^{2}}=|x|$ (which is x only if x is positive!)

6 (6 points) Determine the equation of the tangent line to the graph of $y=x^{2}-x$, which passes through the point $(0,-1)$ and whose point of tangency P is in the second quadrant. See the picture below.

$y^{\prime}=2 x-1$
We don't know the coordinates of the point P of tangency, so we label it $(a, f(a))$.
We need to compute a.
There are a few different ways to get an equation in a. I'll use my favorite one, which is to write the slope of the tangent line two different ways: as the derivative at a, and as the rise over the run between $(a, f(a)) \&(0,-1)$:

$$
\begin{gathered}
2 a-1=\frac{\left(a^{2}-a\right)-(-1)}{a-0} \\
2 a-1=\frac{a^{2}-a+1}{a}
\end{gathered}
$$

Solving, we get: $a= \pm 1$. The point P we want is $(a, f(a))=(-1,2)$
Tangent line at P has equation: $y=-3 x-1$

