MATH 124B
Exam I - Version 1 - Hints and Answers
April 20, 2004

1. (a) i. 2
ii. DNE
iii. 1
iv. 9
v. 3
(b) i. NO
ii. YES
iii. NO
2. (a) HINT: Multiply the expression in the limit by $\frac{\sqrt{x}+3}{\sqrt{x}+3}$.

ANSWER: $\frac{1}{6}$
(b) HINT: Multiply the expression in the limit by $\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}$.

ANSWER: 0
(c) HINT: As x approaches 2 from the left, $x+3$ approaches 5 and $2-x$ approaches 0 . In particular, the numerator is positive and, since x is approaching 2 from the left, $2-x$ is also positive.
ANSWER: $+\infty$
(d) HINT: Since x is approaching 4 from the right, $4-x$ is negative. This means that $|4-x|=-(4-x)=x-4$. To receive full credit, you must demonstrate that you understand that this is true for any x larger than 4 .
ANSWER: 1
(e) HINT: Factor and cancel.

ANSWER: $-\frac{7}{3}$
3. HINT: Since $c x-3$ and $3-x+2 x^{2}$ are polynomials, $f(x)$ is continuous at all values of x not equal to 2. If $f(x)$ is to be continuous at 2 , we need $\lim _{x \rightarrow 2^{-}} f(x)$ to be equal to $\lim _{x \rightarrow 2^{+}} f(x)$. We have:

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} c x-3=2 c-3 \text { and } \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3-x+2 x^{2}=9 .
$$

So, set $2 c-3$ equal to 9 and solve for c.
ANSWER: $c=6$
4. (a) HINT: $g^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{1}{a+h-4}-\frac{1}{a-4}}{h}$. Get a common denominator, combine fractions and cancel some h 's.
ANSWER: $g^{\prime}(a)=\frac{-1}{(a-4)^{2}}$
(b) HINT: The slope of the tangent line is $g^{\prime}(0)=-\frac{1}{16}$. The y-intercept is $-\frac{1}{4}$.

ANSWER: $y=-\frac{1}{16} x-\frac{1}{4}$
5. (a) ANSWER: $Q(0)=1$ thousand people
(b) ANSWER: $Q(2)=7.34$ thousand people
(c) ANSWER: $\lim _{x \rightarrow \infty} Q(t)=20$. This means that, eventually, 20,000 people will catch the disease.
6. (a) HINT: Take $a=120$ and $h=30$.

ANSWER: $v_{a v}=9.07$ feet per second
(b) HINT: Take $h=10$ and solve $v_{a v}=11.81$ for a.

ANSWER: from $t=1500$ to $t=1510$
(c) ANSWER: $v(a)=s^{\prime}(a)=\lim _{h \rightarrow 0}(0.002 a+0.001 h+8.8)=0.002 a+8.8$

