Math 124 C - Spring 2010
 Mid-Term Exam Number One
 April 27, 2010
 Answers

There were two versions of the exam.
Version A - The numerator of problem 1(a) is $x^{3}-25 x$.

1. (a) $\frac{10}{3}$ (b) $\frac{3}{2}$ (c) $\frac{1}{5}$
2. (a) $f^{\prime}(x)=5 x^{4}-12 x^{3}+2 \cos 2 x$
(b) $f^{\prime}(x)=\frac{\left(3+e^{x}\right)(6+\tan x)-\left(3 x+e^{x}\right)\left(\sec ^{2} x\right)}{(6+\tan x)^{2}}$
(c) $f^{\prime}(x)=5 x^{4} \cos \left(3 x^{2}+x\right)+x^{5}\left(-\sin \left(3 x^{2}+x\right)(6 x+1)\right)$
(d) $f^{\prime}(x)=-\left(x^{2}+\sec x\right)^{-2}(2 x+\sec x \tan x)$
3. (a) $\frac{-25}{24} \mathrm{~m} / \mathrm{s}$ (b) 3.83095 m .
4. $a=3 \pm \frac{1}{2} \sqrt{26}$
5. (a) $\frac{1}{a}$ (b) $-a+1$
(c) The function will be continous at $x=0$ only if $\frac{1}{a}=-a+1$. However, this equation is equivalent to $a^{2}-a+1=0$, which has no real solutions, so there is no a which makes the function continuous everywhere.
6. $f(x)=-\frac{3}{2} x^{2}+7 x-\frac{7}{2}$

Version B - The numerator of problem 1(a) is $x^{3}-16 x$.

1. (a) $\frac{8}{5}$ (b) $\frac{7}{2}$ (c) $\frac{1}{2}$
2. (a) $f^{\prime}(x)=3 x^{2}-6 x+3 \cos 3 x$
(b) $f^{\prime}(x)=\frac{\left(6+e^{x}\right)(5+\tan x)-\left(6 x+e^{x}\right)\left(\sec ^{2} x\right)}{(5+\tan x)^{2}}$
(c) $f^{\prime}(x)=4 x^{3} \cos \left(4 x^{3}+x\right)-x^{4} \sin \left(4 x^{3}+x\right)\left(12 x^{2}+1\right)$
(d) $f^{\prime}(x)=-\left(x^{2}+\sec x\right)^{-2}(2 x+\sec x \tan x)$
3. (a) $\frac{-17}{15} \mathrm{~m} / \mathrm{s}$ (b) 13.9687 m .
4. $a=4 \pm \frac{1}{3} \sqrt{111}$
5. (a) $\frac{1}{a}$ (b) $-a+1$
(c) The function will be continous at $x=0$ only if $\frac{1}{a}=-a+1$. However, this equation is equivalent to $a^{2}-a+1=0$, which has no real solutions, so there is no a which makes the function continuous everywhere.
6. $f(x)=3 x^{2}-4 x+5$
