Math 124 C - Spring 2010 Mid-Term Exam Number One April 27, 2010 Answers

There were two versions of the exam.

Version A - The numerator of problem 1(a) is $x^3 - 25x$.

1. (a)
$$\frac{10}{3}$$
 (b) $\frac{3}{2}$ (c) $\frac{1}{5}$

2. (a)
$$f'(x) = 5x^4 - 12x^3 + 2\cos 2x$$

(b)
$$f'(x) = \frac{(3+e^x)(6+\tan x) - (3x+e^x)(\sec^2 x)}{(6+\tan x)^2}$$

(c)
$$f'(x) = 5x^4 \cos(3x^2 + x) + x^5(-\sin(3x^2 + x)(6x + 1))$$

(d)
$$f'(x) = -(x^2 + \sec x)^{-2}(2x + \sec x \tan x)$$

3. (a)
$$\frac{-25}{24}m/s$$
 (b) 3.83095 m.

4.
$$a = 3 \pm \frac{1}{2}\sqrt{26}$$

5. (a)
$$\frac{1}{a}$$
 (b) $-a + 1$

(c) The function will be continous at x = 0 only if $\frac{1}{a} = -a + 1$. However, this equation is equivalent to $a^2 - a + 1 = 0$, which has no real solutions, so there is no a which makes the function continuous everywhere.

6.
$$f(x) = -\frac{3}{2}x^2 + 7x - \frac{7}{2}$$

Version B - The numerator of problem 1(a) is $x^3 - 16x$.

1. (a)
$$\frac{8}{5}$$
 (b) $\frac{7}{2}$ (c) $\frac{1}{2}$

2. (a)
$$f'(x) = 3x^2 - 6x + 3\cos 3x$$

(b)
$$f'(x) = \frac{(6+e^x)(5+\tan x) - (6x+e^x)(\sec^2 x)}{(5+\tan x)^2}$$

(c)
$$f'(x) = 4x^3 \cos(4x^3 + x) - x^4 \sin(4x^3 + x)(12x^2 + 1)$$

(d)
$$f'(x) = -(x^2 + \sec x)^{-2}(2x + \sec x \tan x)$$

3. (a)
$$\frac{-17}{15}$$
 m/s (b) 13.9687 m.

4.
$$a = 4 \pm \frac{1}{3}\sqrt{111}$$

5. (a)
$$\frac{1}{a}$$
 (b) $-a + 1$

(c) The function will be continous at x=0 only if $\frac{1}{a}=-a+1$. However, this equation is equivalent to $a^2-a+1=0$, which has no real solutions, so there is no a which makes the function continuous everywhere.

6.
$$f(x) = 3x^2 - 4x + 5$$