Math 120 Chapter 13 through 15 Review

This review is not all inclusive. You are expected to know how to do all the problems in the homework.

1. **Chapters 13 - Moving Functions Around** - Understand how to reflect, shift and dilate known functions.
 - We discuss six types of movement (The change is given along with what you actually do to the coordinates):
 (a) Reflect across y-axis: Replace “x” by “− x”. (Flip signs of x-coordinates)
 (b) Reflect across x-axis: Replace “y” by “− y”. (Flip signs of y-coordinates)
 (c) Shift horizontally by h: Replace “x” by “x − h”. (Add h to all x-coordinates)
 (d) Shift vertically by k: Replace “y” by “y − k”. (Add k to all y-coordinates)
 (e) Dilate horizontally by c: Replace “x” by “cx”. (Divide all x-coordinates by c)
 (f) Dilate vertically by d: Replace “y” by “dy”. (Divide all y-coordinates by d)
 - Here is the recipe to perform movement from a given graph \(y = f(x) \). I will illustrate using the example \(y = 2f(3x - 4) - 5 \)
 (a) Label several points in the graph of the known function.
 (b) Move “outside stuff” to the y side: \(\frac{1}{2}(y + 5) = f(3x - 4) \). The two cases for order of operations are illustrated here:
 - \(c(y + d) \): Do the ‘c’ movement first.
 - \(ax + b \): Do the ‘b’ movement first.
 (c) Horizontal movement: For this example you would
 1. Add 4 to x-coordinates.
 2. Divide x-coordinates by 3.
 (d) Vertical movement: For this example you would
 1. Multiply y-coordinates by 2.
 2. Subtract 5 from y-coordinates.
 (e) Plot the new points and draw the resulting graph.

2. **Chapter 14 - Linear-to-Linear Modeling** - Know the features of linear-to-linear models and how to find the models when given various information.
 - All linear-to-linear models and be written in the form:
 \[
 y = \frac{ax + b}{x + d}
 \]
 for some constants \(a, b \) and \(d \).
 - Linear-to-linear models have the following features:
 - One vertical asymptote at \(x = -d \).
 - One horizontal asymptote at \(y = k \).
 - Once you draw the asymptotes, the basic shape is either like \(y = \frac{1}{x} \) or \(y = -\frac{1}{x} \). You can plot one or two other points to sketch the graph.
 - In story problems, we can ask you to find a linear-to-linear model given:
 (a) 3 points (like in HW 14.5, 14.9ab) : Plug in all three data points for \(x \) and \(y \) to get three equations. Combine and solve for \(a, b, \) and \(d \).
 (b) 2 points and an asymptote (like in HW 14.6, 14.7, 14.9c, 14.10): Use the asymptote information first, then use the data points for \(x \) and \(y \), combine equations and solve.
 - Be able to solve equations involving multipart functions (like in HW 14.5, 14.7, 14.10b)
3. Chapter 15 - Radian/Degree Intro

- Be able to convert from radians to degrees and vice versa (As in HW 15.1). Remember \(2\pi \) radians = 360 degrees.

- Be able to find the area of a wedge and the arc length along the edge of a circle when given an angle and radius (the formulas are first written in the way we derived them, then they are simplified):

 WHEN \(\theta \) IS IN DEGREES:

 \[
 \text{Arc Length} = (2\pi r) \left(\frac{\theta}{360} \right) = \left(\frac{\pi}{180} \right) r \theta
 \]

 \[
 \text{Area of a Wedge} = (\pi r^2) \left(\frac{\theta}{360} \right) = \left(\frac{\pi}{360} \right) r^2 \theta
 \]

 WHEN \(\theta \) IS IN RADIANS:

 \[
 \text{Arc Length} = (2\pi r) \left(\frac{\theta}{2\pi} \right) = r \theta
 \]

 \[
 \text{Area of a Wedge} = (\pi r^2) \left(\frac{\theta}{2\pi} \right) = \frac{1}{2} r^2 \theta
 \]

- Be able to use these in problems like in HW 15.3, 15.4, 15.8.