Chapter 13 Formula Overview

- $\int f(x) d x=$ indefinite integral $=$ general antiderivative of $f(x)$ (will include $\mathrm{a}+C$)
- $\int_{a}^{b} f(x) d x=$ definite integral $=$ signed area between $f(x)$ and x axis from $x=a$ to $x=b$ (this will be a number).
- $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where $F(x)$ is any antiderivative of $f(x)$ (that means $F^{\prime}(x)=f(x)$). This is the fundamental theorem of calculus.
Notable business uses of the fundamental theorem:

$$
\begin{aligned}
& -T R(x)=\int_{0}^{x} M R(q) d q \\
& -V C(x)=\int_{0}^{x} M C(q) d q \\
& -T C(x)-T C(0)=\int_{0}^{x} M C(q) d q, \text { so } T C(x)=\int_{0}^{x} M C(q) d q+F C \\
& -P(x)=\int_{0}^{x} M R(x) d x-\int_{0}^{x} M C(x) d x-F C=\int_{0}^{x} M R(x)-M C(x) d x-F C
\end{aligned}
$$

- If $r(t)$ is the rate of income flow (in other words it is the derivative of the income formula) in dollars/years, then

$$
\text { "Total income from } t=0 \text { to } t=a "=\int_{0}^{a} r(t) d t
$$

- If $f(x)$ is above $g(x)$ from $x=a$ to $x=b$, then the area between $f(x)$ and $g(x)$ from $x=a$ to $x=b$ is given by
Area between $=\int_{a}^{b} f(x)-g(x) d x$.
- Suppose $p=f(x)$ is the demand function and $p=g(x)$ is the supply function. If market equilibrium occurs at $x=x_{1}$ and $p=p_{1}$ (you find this by getting the x and y coordinates of the intersection from $f(x)=g(x))$, then
Consumer Surplus $=\int_{0}^{x_{1}} f(x) d x-p_{1} x_{1}$
Producer Surplus $=p_{1} x_{1}-\int_{0}^{x_{1}} g(x) d x$.

