Deriving the Annuity Formulas

There are four varients of the annuity formulas that we will discuss in this class. Before we can discuss where they come from, we need the following pattern.

An important Pattern

By expanding you can see:

$$
\begin{aligned}
\left(1+x+x^{2}\right)(x-1) & =x^{3}-1 \\
\left(1+x+x^{2}+x^{3}\right)(x-1) & =x^{4}-1 \\
\left(1+x+x^{2}+x^{3}+x^{4}\right)(x-1) & =x^{5}-1
\end{aligned}
$$

Dividing by $(x-1)$ in each case gives:

$$
\begin{aligned}
1+x+x^{2} & =\frac{x^{3}-1}{x-1} \\
1+x+x^{2}+x^{3} & =\frac{x^{4}-1}{x-1} \\
1+x+x^{2}+x^{3}+x^{4} & =\frac{x^{5}-1}{x-1}
\end{aligned}
$$

In general, we get what is called the geometric identity

$$
1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

For example: $1+(1.02)+(1.02)^{2}+\cdots+(1.02)^{20}=\frac{(1.02)^{21}-1}{1.02-1} \approx 25.783$.

SEveral examples explaining where AnNuITY FORMULAS COME FROM:
Ex 1) You deposit 100 at the end of each quarter in an account that earns WHAT IS THEE BALANCE IN A YEAR?
STEP: QUARTERLY RATE $=i=\frac{r}{m}=\frac{0.05}{4}=0.0125$
So every quarter the balance is MULTPGED BY $1+i=1.0125$
to get tate new value plus interest

Step 2: There ane 4 payments of 100 .
Let' talk about each one:
15t PAYMENT: WILL EANN INTEREST 3 TIMES!
IT WILL Gino to $100(1.0125)^{3}$
$2^{\text {Od }}$ PAYMERT: WIL EANT intend 2 mmes!
H WILL know to $100(1.0125)^{2}$
$3^{\text {od }}$ pameat $=$ WILL grow to $100(1.0125)^{\prime}$
$4 \pm$ pAyment $=$ NO iNTERET YET WILL JUST DE 100 .

$$
\begin{aligned}
\text { ANswer } & =100+100(1.0125)+100(1.0125)^{2}+100(1.0125)^{3} \\
& =100(\underbrace{1+(1.0125)+(1.0125)^{2}+(1.0125)^{3}}_{\text {same }})^{15} \\
& =100 \frac{(1.0125)^{4}-1}{1.0125-1}=100 \frac{(1.0125)^{4}-1}{0.0125} \\
& \approx 407.562695 \\
& =407.56
\end{aligned}
$$

Ex21 You withdraw sion at the end of each quarter from an account that earns 5\% annually, compounded quarterly And the balance is Zero at the end of the year. WHAT LAS TAR STANETNG BALANCE?
STEP 1: Again $i=\frac{n}{x}=\frac{0.05}{t}=0.0125$.
MuLnew by $1+L=1.0125$ each quot.

balance is zeno
STEP 2: WONK BACKWARD! LET'S TALK ADOUT EACH WITHPNAKL
|It with drawl: What amount grew to give \$100?
That 15 , $100=P(1.0125)$
So $P=\frac{100}{81.015}=100(1.0125)^{-1}$

$$
\approx^{8} 98.7654
$$

Thus, $100(1.0125)^{-1}=98.7654$ of the onymal balance is what gan the 仩 100 with drawl.
2 nd withdraw: $100=p(1.0125)^{2}$
so $\quad P=\frac{100}{(1.017)^{2}}=100(1.0125)^{-2}$
$=97.5461$ beam the $2=$ witudroux
$3^{\text {d }}: \quad P=100(1.0125)^{-2}$
th $^{2}:$
$p=100(1.0125)^{-4}$

$$
\begin{aligned}
\text { TOTAL STAMP BALANLE } & =100(1.0125)^{-1}+100(1.0121)^{-2}+100(1.0025)^{-3}+100(1.0125)^{-4} \\
& =100\left[\frac{\left.(1.0125)^{-1}+(1.0125)^{-2}+(1.0125)^{-3}+(1.0125)^{-4}\right)}{0.0125}\right]= \\
& =100\left[\frac{1-(1.0125)^{4}}{0.87 .805798}\right. \\
& =187.811
\end{aligned}
$$

The four scenarios:

$$
\begin{aligned}
& i=\frac{r}{m} \\
& n=m t
\end{aligned}
$$

1. Ordinary Annuity Future Value: Payments at the END of each compounding period.

You are given or want to know the future value.

2. Annuity Due Future Value: Payments at the BEGINNING of each compounding period.

You are given or want to know the future value.

$$
\text { TOTAL }=R \frac{(1+i)^{2}-1}{L}(1+i)
$$

SAME AS ABOVE
BUT WITH ONE
ExTRa COMPOunding

$$
F=R\left[\frac{(1+2)^{n}-1}{i}\right](1+i)
$$

PERIoD ANTE END
3. Ordinary Annuity Present Value: Payments at the END of each compounding period.

You are given or want to know the present (start) value.

4. Annuity Due Present Value: Payments at the BEGINNING of each compounding period.

You are given or want to know the present (start) value.

$$
\begin{aligned}
& \text { ToNAL }=12\left[\frac{1}{1+i i}+\frac{1}{(1+i)^{2}}+\frac{1}{(1+i)^{2}}+\cdots+\frac{1}{(1+i)^{8}}\right] \\
& \begin{aligned}
& \left.=\frac{12}{(1+i)}\left(1+(1+i)^{-1}+(1+i)^{-1}\right)^{2}+\left(\cdots+(1+1)^{-1}\right)^{7}\right) \\
& =\frac{12}{(1+i)} \frac{\left.(1+i)^{-1}\right)^{8}-1}{(1+i)^{-1}-1} \\
& =R \frac{(1+i)^{-8}-1}{1-(1+i)}=12 \frac{1-(1+i)^{-8}}{i} \\
D & =R\left[\frac{\left.1-(1+i)^{-n}\right]}{1}\right]
\end{aligned}
\end{aligned}
$$

