1 If the radius of the big wheel is taken to be one, the part of the astroid in the first quadrant can be shown to have the equation $x^{2 / 3}+y^{2 / 3}=1$. Use disks to compute the volume of the solid generated by rotating this portion of the curve around the y-axis.

Compute $\int_{0}^{1} \pi x^{2} d y$ where $x^{2}=\left(1-y^{2 / 3}\right)^{3}$.
Thus the integral is $\pi \int_{0}^{1} 1-3 y^{2 / 3}+3 y^{4 / 3}-y^{2} d y=\frac{16}{105} \pi$.
Hopefully, the students will complain about the algebra here. The method in Problem 2 is less algebraic, but requires a tricky substitution.

2 Use cylindrical shells to compute the volume of the solid generated by rotating the first quadrant portion of the astroid about the x-axis. How does this compare with your answer in Problem 1? Can you explain this geometrically?

Compute $\int_{0}^{1} 2 \pi x y d y$ where $x=\left(1-y^{2 / 3}\right)^{3 / 2}$.
The integral is $\int_{0}^{1} 2 \pi y\left(1-y^{2 / 3}\right)^{3 / 2} d y$.
Take $u^{3}=y^{2}$ and $3 u^{2} d u=2 y d y$ to get $\int_{0}^{1} 3 \pi u^{2}(1-u)^{3 / 2} d u$.
Now take $v=1-u$ and $d v=-d u$ to get

$$
-3 \pi \int_{1}^{0}(1-v)^{2} v^{3 / 2} d v=3 \pi \int_{0}^{1} v^{3 / 2}-2 v^{5 / 2}+v^{7 / 2} d v=\frac{16}{105} \pi
$$

The volumes are the same because the astroid curve is symmetric about the line $y=x$.
Notice that shells, here, are more difficult than disks.
3 Use any method you wish to compute the volumes of the solids generated by rotating the first quadrant portion of the astroid about the lines $x=1$ and $y=-1$. Set up only. Do not compute the integrals.

I'd use shells for both of these.
For $x=1$ the integral is $\int_{0}^{1} 2 \pi(1-x) y d x=2 \pi \int_{0}^{1}(1-x)\left(1-x^{2 / 3}\right)^{3 / 2} d x=\frac{3}{16} \pi^{2}-\frac{16}{105} \pi$.
For $y=-1$ the integral is $\int_{0}^{1} 2 \pi(y+1) x d y=2 \pi \int_{0}^{1}(y+1)\left(1-y^{2 / 3}\right)^{3 / 2} d y=\frac{3}{16} \pi^{2}+\frac{16}{105} \pi$.
These are both solved in a similar manner to Problem 2. The thing to focus on is the set-up. Make sure the students sketch pictures.

