Name

Quiz Section

Introduction

Many interesting and useful functions can be defined as the area under some other function. There is a very nice relationship between the original function and the area function. We will explore that relationship in this worksheet.

Area Functions

Define A(x) to be the **area** bounded by the x-axis and the function f(x) = 3 between the y-axis and the vertical line at x. (See the diagram.)

$$A(1) =$$

$$A(2) =$$

$$A(3) =$$

$$A(4) =$$

and, in general,

$$A(x) =$$
 (a formula)

Shade the region whose area is A(3) - A(1).

Define B(x) to be the **area** bounded by the x-axis and the function g(x) = 1 + x between the y-axis and the vertical line at x. (See the diagram.)

$$B(1) =$$

$$B(3) =$$

$$B(4) =$$

and, in general,

$$B(x) =$$
 (a formula) (Hint: think triangle + rectangle)

Shade the region whose area is B(3) - B(1).

Define C(x) to be the **area** bounded by the x-axis and the function h(x) = 6 - x between the y-axis and the vertical line at x. (See the diagram.)

$$C(1) = \underline{\hspace{1cm}} C(2) = \underline{\hspace{1cm}}$$

$$C(2) =$$

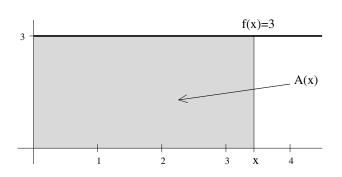
$$C(3) =$$

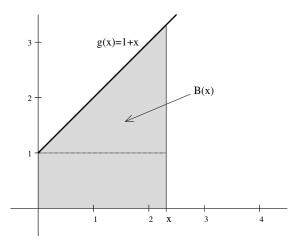
$$C(4) =$$

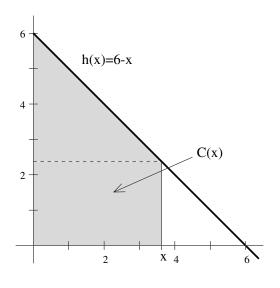
and, in general,

$$C(x) =$$
 (a formula)

Shade the region whose area is C(3) - C(1).







For each of the above, the **area** increases as x increases. So A(x), B(x) and C(x) are increasing functions even though f(x) is constant, g(x) is increasing and h(x) is decreasing. (There is a difficulty with C(x) when x gets larger than 6. We'll deal with that later.)

1d Now calculate the derivatives of the area functions from problems 1, 2 and 3 above:

$$A'(x) =$$

$$B'(x) = \underline{\hspace{1cm}}$$

$$C'(x) =$$

How is A'(x) related to f(x) in problem 1?

How is B'(x) related to g(x) in problem 2?

How is C'(x) related to h(x) in problem 3?

The Natural Logarithm

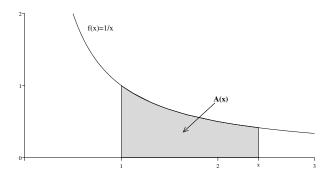
Define A(x) to be the **area** bounded by the x-axis and the function f(x) = 1/x between the line x = 1 and the vertical line at x. (See the diagram.)

Based on your work in problem 1,

$$A'(x) =$$

Compute A(1) =

Compute A(x) =



2b So the area under f(x) = 1/x between x = 1 and x = 2 is equal to ln(2). Outline this area on the graph. We'll use estimates of this area to compute approximations of ln(2).

2c Slice the area up into 4 pieces by drawing 3 evenly spaced vertical lines from the x-axis up to the curve.

2d Using the left side of each slice as the height, sketch in 4 rectangles on your graph. What are the x-coordinates of the sides of the rectangles? Plug these x-coordinates into f(x) = 1/x to compute the heights of the rectangles. Find the areas of the 4 rectangles and add them up. This is your first approximation of the area under the curve, and $\ln(2)$. Is it an over-estimate or an under-estimate?

